令和元年12月5日 第39回レオロジー講座

界面のレオロジー

九州大学 大学院工学研究院 田中 敬二

k-tanaka@cstf.kyushu-u.ac.jp

界面のレオロジー

■ はじめに

- 実験手法
- 弾性率マッピング
- セグメント運動(ガラス転移)
- 拡散挙動
- ローカルモード

■ 液体界面

■ 異種固体界面

■ おわりに

Tm:融点、Tg:ガラス転移温度

ガラス転移は「緩和現象」であり、分子運動的 にはミクロブラウン運動の凍結にあたる。

高分子固体の定義

デボラ数: $D_{e} = \tau / t$ D_e >> 1

τ (= η / E):緩和時間
 η:粘性係数
 E:弾性率

t: 観測時間

τ:緩和時間 τ₀:分子振動に起因する特性時間 B: 活性化温度 T_v: Vogel温度 粘度が∞になる仮想的な温度で 一般的には(T,-50)K cf. Ahrrenius式 $\tau = \tau_0 \cdot \exp(B/T)$ 緩和時間100 s程度の セグメント運動を 「ガラス転移」という。

緩和現象を記述できる力学モデル

Maxwellモデル

Maxwell模型 固体用の力学モデル (系の歪みは一定)

応力: σ 、歪み: ε $\sigma = E\varepsilon = \eta_{E} \cdot (d\varepsilon/dt)$ $\varepsilon = \varepsilon_{1} + \varepsilon_{2}$

$$\frac{d\varepsilon}{dt} = \frac{d\varepsilon_1}{dt} + \frac{d\varepsilon_2}{dt}$$
$$\frac{d\varepsilon}{dt} = \frac{1}{E}\frac{d\sigma}{dt} + \frac{\sigma}{\eta_E}$$

 $\sigma(t) = \sigma_0 exp(-t/\tau)$ 緩和時間: $\tau = \eta_E/E$

貯蔵弾性率と損失弾性率

f:周波数

3

高分子束縛系のダイナミクス

● 薄膜、ナノポア

Adam - Gibbsの理論 分子・セグメントが協同的に 動くドメインが存在する。

協調再配置領域:Cooperativity rearranging region (CRR) *CRRのサイズは?*

多くの工学的な応用

潤滑、摩擦・摩耗、接着・粘着、生体適合性、積層材料、•••

<u>ナノレベルの構造と物性</u>

分子鎖熱運動特性

T. Kerle, Z. Lin, H.-C. Kim, T. P. Russell, *Macromolecules* 2001, 34, 3484.

界面のレオロジー

- はじめに
- 実験手法
- 弾性率マッピング
- セグメント運動(ガラス転移)
- 拡散挙動
- ローカルモード

■ 液体界面

■ 異種固体界面

■ おわりに

一般的な表面分析法

接触角(静的、動的) 表面エネルギー、界面エネルギー

- 分光法(FT-IR ATR、SFG、XPS) 官能基の定性・定量分析と配向性の評価
- 反射・散乱・回折(光、X線、中性子) 粗さ、密度分布、結晶構造、相構造、吸脱着現象
- イオンビーム(ToF-SIMS、DSIMS)
 官能基の定性・半定量分析と深さ分析
- 電子顕微鏡(SEM、TEM) 形態、結晶構造、相構造、化学種の同定・マッピング
- プローブ顕微鏡(STM、AFM、LFM、・・・) 形態、各種物性

表面レオロジーの解析法

走查粘弹性顕微鏡: Scanning Viscoelasticity Microscopy (SVM)

surface E' (surface dynamic storage modulus) surface E'' (surface dynamic loss modulus) surface tan δ (surface dynamic loss tangent)

水平力顕微鏡: Lateral Force Microscopy (LFM)

cf. tapping mode

界面のレオロジー

■ はじめに

- 実験手法
- 弾性率マッピング
- セグメント運動(ガラス転移)
- 拡散挙動
- ローカルモード

■ 液体界面

■ 異種固体界面

■ おわりに

表面弾性率の二次元マッピング

表面形態像

 E_{PS} =4.5 GPa E_{si} =280 GPa k_{c} = 0.8 N•m⁻¹

表面弾性率像の温度依存性

界面のレオロジー

■ はじめに

- 実験手法
- 弾性率マッピング
- セグメント運動(ガラス転移)
- 拡散挙動
- ローカルモード

■ 液体界面

■ 異種固体界面

■ おわりに

表面弾性率および位相差の温度依存性

表面位相差の温度・周波数依存性

表面T_aの決定

損失弾性率(Eⁿ)の温度依存性
 (吸収極大はωτ = (2πf)τ = 1のときに観測)

ガラス転移におけるセグメント 運動の緩和時間 τ を100 sとす ると、吸収極大で T_g を決めるに は $f = 1/(2\pi\tau) \sim 1.6$ mHzで測定 しなければならない

→ 実験的に極めて困難。

単分散PSにおける表面 T_g vs. バルク T_g

粗視化分子動力学シミュレーション

bead-spring model of Grest and Kremer

 $U^{B}(r) = U^{FENE}(r) + U^{LJ}(r)$

time evolution of beads at position, \mathbf{r}_n

$$\mathbf{m}\frac{\mathrm{d}^{2}\mathbf{r}_{\mathrm{n}}}{\mathrm{d}t^{2}} = -\frac{\partial \mathbf{U}}{\partial\mathbf{r}_{\mathrm{n}}} - \Gamma\frac{\mathrm{d}\mathbf{r}_{\mathrm{n}}}{\mathrm{d}t} + \mathbf{W}_{\mathrm{n}}(t)$$

$$\langle \mathbf{W}_{n}(t)\mathbf{W}_{m}(t')\rangle = 2k_{B}Tm\Gamma\delta_{nm}\mathbf{I}\delta(t-t')$$

 $k=30.0\varepsilon/\sigma^2$, $R_0=3.0\sigma$, $r^{cut}=2.0\sigma$ & $\Gamma=0.5\tau^{-1}$

mean square displacement of the segment in the layer, *l*

$$\phi_{\ell}(\tau^{*}) = \frac{\sum_{t} \sum_{\substack{n \text{ in layer } \ell \\ t}} [\mathbf{r}_{n}(t+\tau^{*}) - \mathbf{r}_{n}(t)]^{2}}{\sum_{t} \sum_{\substack{n \text{ in layer } \ell \\ t}} 1}$$
$$\phi_{s}(t) = \sigma^{2} \left(\frac{t}{\tau_{s}}\right)^{\alpha} \phi_{b}(t) = \sigma^{2} \left(\frac{t}{\tau_{b}}\right)^{\alpha}$$
$$\phi_{s}(\tau^{*};T) = \sigma^{2} (\tau^{*}/\tau_{s}(T))^{\alpha}$$

Morita et al., *Macromolecules* **39**, 6233 (2006).

種々の末端構造を有する単分散PS

sec −C ₄ H ₉ ←CH ₂ −CH → H	Sample	M _n	<i>M</i> _w / <i>M</i> _n	<i>Т</i> _g ь / К
$\widehat{\bigcirc}$	PS-H	4.9k	1.09	354
		30k	1.08	374
-		54k	1.03	377
proton-terminated PS		90k	1.05	378
		140k	1.05	382
$\sim (CH_{2}) \rightarrow (CH_{2}$	2	250k	1.03	382
\downarrow \downarrow \downarrow \downarrow \uparrow	2	1,450k ^{a)}	1.06	383
	α,ω - PS(NH ₂) ₂	5.5k	1.25	358
		14k	1.07	374
		23k	1.08	374
α, ω - diamino -terminated PS	52k	1.08	377	
		75k	1.12	378
	α, ω - PS(COOH) ₂ ^{b)}	5.1k	1.17	388
		12k	1.09	385
		52k	1.08	382
		94k	1.07	381

a) Purchased from Pressure Chemical Co., Ltd. b) Purchased from Polymer Source. Inc.

 α, ω -dicarboxy -terminated PS

Η

協同運動性:バルクと表面

at surface:

Molecular segments in a domain can only relax together.

Cooperativity for segmental motion might be reduced at surface.

Surface: 200<u>+</u>20kJ mol⁻¹ Bulk: 360-880 kJ mol⁻¹

和周波発生(SFG)分光測定

ssp</bd>

ssp

ppp・・・・ すべての方向の成分

界面のレオロジー

■ はじめに

■ 実験手法

■ 弾性率マッピング

■ セグメント運動(ガラス転移)

■ 拡散挙動

■ ローカルモード

■ 液体界面

■ 異種固体界面

■ おわりに

分子運動しやすい深さ範囲は?

Monodisperse PS films

$T_g^s < T_g^b$

 $T_{g}^{s} < T_{ann} < T_{g}^{b}$

Surface depth range in which molecular mobility is enhanced can be examined using a bilayer film.

動的二次イオン質量分析 (DSIMS)

Atomika SIMS4000 ー次イオンビームソース:酸素とアルゴン 加速電圧:3 k - 15 kV 測定面積:250 μm - 1000 μm 深さ分解能:7 - 8 nm

Time evolution of interfacial thickness for (hPS29k/dPS29k) bilayer

引張りせん断接着強さ試験

界面接着強さの時間発展

• 二層膜調製時、圧力印加 →接着試験用試料と同条件

到達した界面厚の半分(4.3±0.6 nm)は、分子鎖の 拡がり(9.3 nm)より小さい値であった。

界面接着強さと界面厚の関係

ポリスチレン(PS)/PS界面の被着面積をナノレベル までスケールダウンした 際の接着力発現機構に ついて検討する。

ナノ接着強度の時間発展

ナノ接着強度 (
$$G_N$$
) = $\frac{F_{nano}}{S}$ [MPa]

• $t_{ad} \leq 10^3 \text{ s} \rightarrow G_N \rightleftharpoons G_N(t_{ad} = 0)$

van der Waalsカによる 凝着支配領域

•
$$t_{\rm ad} > 10^3 \, {\rm s}$$

→ G_Nはt_{ad}^{1/4}に比例して増加 した後、一定値の到達

セグメントの拡散

界面のレオロジー

■ はじめに

■ 実験手法

■ 弾性率マッピング

■ セグメント運動(ガラス転移)

■ 拡散挙動

■ ローカルモード

■ 液体界面

■ 異種固体界面

■ おわりに

ポリメタクリル酸メチル膜の表面緩和

PMMAの表面緩和マップ

界面のレオロジー

■ はじめに

- 実験手法
- 弾性率マッピング
- セグメント運動(ガラス転移)
- 拡散挙動
- ローカルモード

■ 液体界面

■ 異種固体界面

■ おわりに

液体/PMMA界面の構造評価

水界面におけるPMMAの緩和挙動

水界面におけるPMMAのTg

 $\Delta \alpha$; change in the cubic expansion coefficient of PMMA (2.45x10⁻⁴ K⁻¹)

Т_{g,РММА}; 399 К, *Т_{g,water}*; 127 К

LFM測定における探針の侵入深さ

水界面におけるPMMAのTg

水界面におけるPMMAの緩和挙動とTg

水平力の立ち上がり温度 = 294 K

界面からの深さ(tipの侵入深さ) 4.5 nmの含水率15 vol%程度の T_gと対応

水中における表面構造再編成@RT

PMMAの対水接触角における 時間&温度依存性

界面のレオロジー

■ はじめに

■ 実験手法

■ 弾性率マッピング

■ セグメント運動(ガラス転移)

■ 拡散挙動

■ ローカルモード

■ 液体界面

■ 異種固体界面

■ おわりに

異種固体界面における高分子

Nanocomposites

Multi layer devices

固体界面におけるPSの $T_q(T_q^i)$

試料:PS (Mn=54.5k)

和周波発生(SFG)分光測定

界面における分子鎖の配向緩和

固体界面に存在する分子鎖を熱的に緩和させることは困難。

熱処理による界面配向の緩和

PMMAの界面局所コンフォメーション

Poly(methyl methacrylate) $M_n=300k, M_w/M_n=1.05$

Hydrophilic quartz substrate

界面のレオロジー

■ はじめに

■ 実験手法

■ 弾性率マッピング

■ セグメント運動(ガラス転移)

■ 拡散挙動

■ ローカルモード

■ 液体界面

■ 異種固体界面

■ おわりに

三次元バルク試料で蓄積されてきた 高分子科学に基づき、表面・界面・ 超薄膜におけるレオロジー特性を予 測・理解することは困難である。

バルク物性 + <u>場の効果</u>

場の効果は精密合成に基づき制御可能!